Optimized antibiotic dosing potential with 3D-printed tablets

Researchers from Pakistan have used 3D printing to develop tablets of antibiotic, ciprofloxacin hydrochloride, with the aim of optimizing antibiotic dosing and personalized pharmaceuticals.

Like Comment
Related Content

A collaborative team of researchers from University of The Punjab (Lahore, Pakistan), Mirpur University of Science & Technology (Pakistan), Bahaudin Zakaria University (Multan, Pakistan) and Lahore College for Women University (Pakistan) has 3D printed tablets containing the antibiotic, ciprofloxacin hydrochloride, in an effort to improve the optimization of antibiotic dosing. 

The team utilized a fused deposition modelling methodology to 3D print tablets of the same size with varying percentages of infill and drug concentration, commenting on the ability of ciprofloxacin hydrochloride to withstand the high temperatures required by the process, without degrading. 

Measuring not only the morphology of each tablet, but also the release of the drug when applied to hydrochloric acid allowed the team to draw conclusions based on the efficacy of drug delivery in this format, postulating on the morphological, chemical and practical characteristics of a potential future drug formulation in this format.

Results described in the Journal of 3D Printing in Medicine illustrate how the release of the antibiotic relied on the infill percentage, as the tablets containing only a 25% infill were reported to completely release the drug in 4 hours, while the tablets containing 50–100% infill gave significantly longer release profiles.


You may also be interested in:


The researchers described how the release may be due to different physical and chemical mechanisms, as the lower the infill percentage, the faster the tablet will dissolve due to internal channels and great exposed surface areas.

In the case of the higher percentage tablets, however, the action is likely to be more diffusion-dependent based on the reduced surface area, with the potential for further erosive action in tightly packed, 100% infill tablets.

The team concluded that 3D-printed tablets could be designed to incorporate personalized drug release profiles for antibiotics such as ciprofloxacin hydrochloride, based on infill patterns. 

Furthermore, the team comments that this project could be used to optimize antibiotic dosing, contributing to an enhanced ‘clinical outcome’ and could even lead to a sophisticated method for personalized medicine production for other pharmaceuticals upon further investigation.

Find out more in our partner publication, Journal of 3D Printing in Medicine >>

Interested in publishing with the Journal of 3D Printing in Medicine? Contact the Managing Editor, Adam Price-Evans, for more information: a.price-evans@futuremedicine.com 

Source: Abbas N, Qamar N, Hussain A et al. Fabrication of modified-release custom-designed ciprofloxacin tablets via fused deposition modeling 3D printing. J. 3D Print. Med. 4(1), 17–27 (2020)


Lead image: Images of 3D-printed tablets. Reproducible with permission from Future Medicine. Taken from: Abbas N, Qamar N, Hussain A et al. Fabrication of modified-release custom-designed ciprofloxacin tablets via fused deposition modeling 3D printing. J. 3D Print. Med. 4(1), 17–27 (2020)

Go to the profile of Georgi Makin

Georgi Makin

Senior Editor, 3DMedNet, Future Science Group

I am the Senior Editor of 3DMedNet, so please do not hesitate to get in touch should you have any queries or comments. You can also follow me on Twitter for the latest updates: @GeorgiMakin

No comments yet.